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Motivation

- We want to know what goes on inside highly dense astrophysical objects,
specifically neutron stars

- Neutron stars — the final stage of a massive star (~10-30 M) fit inside the
width of Rhode Island three times over

« Not much is known about what happens within the inner core of such dense
neutron material Thinamosplee
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Neutron Star Diagram. Digital image. NASA.gov. N.p., 17 Feb.
2016. Web. 22 July 2016.
<https://heasarc.gsfc.nasa.gov/docs/nicer/nicer_about.html>.



Background

- Looking at quark properties shines light on the properties of highly dense
neutron matter
« QCD asymptotic freedom suggests chiral symmetry restoration at high
densities
= Asymptotic freedom says that quarks interact weakly at high energies, not
allowing them to form a condensate
« Chiral symmetry — the application of symmetry to the “handedness” of a
gauge theory (in this case, the field theory QCD)
= An approximate theory of the strong interactions based on vanishing quark
masses (up and down quarks are so light next to hadronic scales)
 Chiral Condensate ((gq)) — a scalar quark density value which, when
vanishing, means chiral symmetry is being restored

= Analyzing the behavior of this condensate sheds light on the symmetry restoration
phase transition of neutron matter
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Chiral Symmetry Breaking Analogy

- Analogy — spontaneous magnetization in ferromagnetic material
= Spontaneous magnetization is when ferromagnetic material (below Curie
temperature) with no magnetic field applied gain an ordered spin state
- Dependence on Curie temperature, where the symmetry breaking happens

s Above which ferromagnetic material becomes paramagnetic and the spins (spin
waves or magnons) within the material have spherical symmetry

= Below which the direction of the spins follow a preferred axis, or the
magnetization direction

- Astemperature decreases, ferromagnetic material’s spherical symmetry
vanishes

= Looking at these temperature limits (T — 0 and T — T.) shows the behavior of this
symmetry breaking and restoration

= Similar to looking at chiral symmetry breaking and restoration
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C. Wellenhofer et al., “Nuclear thermodynamics from chiral low-momentum interactions”,
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Chiral Effective Theory &
Perturbation Theory

ChEFT - putting together nuclear force
order-by-order

Top figure: potential (force inferred)
relation to distance

MBPT - solving for the quantum
mechanical ground state of a many-body
system

First-order: expectation value of the
chiral potential in the non-
interacting neutron matter ground
state

Second-order: matrix elements of
the potential connecting the non-
interacting ground state and the
excited states of the non-interacting
system

Bottom figure: perturbation theory
diagrams included in present work



Pure Neutron Matter EQOS
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- Pure neutron matter equation of state at finite
temperatures

» Looking at the free energy and pressure of pure neutron
matter (with isotherms)

= Benchmark with virial EOS at low densities
= This project is similar with in-medium neutron matter

C. Wellenhofer et al., “Thermodynamics of isospin-asymmetric nuclear matter from chiral
effective theory”, Phys. Rev. C 92 (2015) 015801.



Deriving the Chiral Condensate

pF =2 fﬂw dppK;[n(p} + fﬂw dpq fﬂm dpaKon(p1)n(psa)
- fﬂm dpy fﬂm dpo f[,% dpsKan(pi)n(p2)n(ps)

5]\ {F_'«J(]__'_ EE _|_ FE _|_ 31?4 )

Om?2 m2 2mn £, 3m3, 8m?,

S. Fiorilla et al., “Nuclear thermodynamics and the in-medium chiral condensate”, Phys.
Lett. B 714 (2012) 251.

- Start with free energy equation based on the different many-body interaction
contributions

> K; is the leading contribution to the free energy density above

» K, dependence on the light quark mass, which is equivalently the pion
mass, is what matters

« Hellmann-Feynman theorem

= This expectation value is the chiral condensate and the parameter is the
pion mass squared
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T. Cohen et al., “Quark and gluon condensates in nuclear matter”, Phys. Rev. C 45 (1992) 4.



Zero Temperature Chiral Condensate

Kriiger et al. analysis with free energy and
interaction energy derivatives

Analysis with just free energy derivative
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T. Kriiger et al., “The chiral condensate in neutron matter”, Phys. Lett. B 726
(2013) 412.



Thermodynamic Properties

1.0 Condensate Ratio versus Density (with Isotherms)
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Contribution Analysis

Omega0 Contribution (with Isotherms)
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Omegal Contribution (with Isotherms)

Omega?2 Contribution (with Isotherms)

Omegao Contribution — first order noninteracting term found to be the dominant term
Omega1 Contribution — change in condensate with respect to the one-body term
Omega2 Contribution — change in condensate with respect to the two-body interaction

term
Although the dominant term is the noninteracting term, this analysis reinforces the
idea that nuclear interactions are important at high densities.



Conclusions

- With the discovery of more massive neutron stars (~2 M), the neutron
matter at the core is becoming more constrained to known models and less
likely to be exotic

= This works supports that claim showing that the existence of exotic matter in
neutron stars is less likely

Future Work

- Repeating analysis
= Chiral potentials with different cutoffs (different resolution scales)

= Chiral potentials at lower orders in the expansion which would help with
uncertainties
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